rreereer

m‘

NetLogger: Distributed System
Monitoring and Analysis Tools

Brian L. Tierney
Dan Gunter

Data Intensive Distributed Computing Group
Lawrence Berkeley National Laboratory

NetLogger

Outline eceeny] :

BERKELEY LAB

Why are we here?

— What is NetLogger?

— What is NetLogger good for?

— What is NetLogger not good for?
NetLogger Components

— message format

— Instrumentation library

— system monitoring tools

— visualization tools
Instrumentation Techniques

Case Studies

— HPSS Storage Manager

— Radiance luminosity application

— Parallel remote data server (DPSS)
Current Work

— Monitoring Agents

NetLogger |

Overview cecoeed) :

BERKELEY LAB

e The Problem

— When building distributed systems, we often
observe unexpectedly low performance
* the reasons for which are usually not obvious

— The bottlenecks can be in any of the following
components:
» the applications
* the operating systems

 the disks or network adapters on either the sending or
receiving host

* the network switches and routers, and so on

e The Solution:

* Highly instrumented systems with precision timing
iInformation and analysis tools

NetLogger |

Bottleneck Analysis ceece?]

BERKELEY LAaB

* Distributed system users and developers often
assume the problem is network congestion

— This is often not true

* In our experience tuning distributed applications,
performance problems are due to:

— network problems: 40%
— host problems: 20%

— application design problems/bugs: 40%
* 50% client , 50% server

 Thereforeitis equally important to instrument the
applications

NetLogger

Motivation ceecer?]

BERKELEY LAaB

 To characterize the performance of distributed
applications, we have developed a methodology for
detailed, end-to-end, top-to-bottom monitoring and
analysis of significant events

— this allows coordinated monitoring of
applications, networks, and hosts

 This has proven invaluable for:

— 1solating and correcting performance bottlenecks
— debugging distributed applications

| NetLogger

NetLogger Toolkit cecoeed) :

« We have developed the NetLogger Toolkit

— A set of tools which make it easy for distributed
applications to log interesting events at every
critical point

— NetLogger also includes tools for host and
network monitoring

« The approach is novel in that it combines network,
host, and application-level monitoring to provide a
complete view of the entire system.

NetLogger

Why “NetLogger”? cecoeed) ’\‘

« The name “NetLogger” is somewhat misleading

— Should really be called: “Distributed
Application, Host, and Network Logger”

* “NetLogger” was a catchy name that stuck

| Netl_ogger |

When to use NetLogger cocoond] :

« When you want to:

— do performance/bottleneck analysis on
distributed applications

— determine which hardware components to
upgrade to alleviate bottlenecks

— do real-time or post-mortem analysis of
applications

— correlate application performance with system
iInformation (ie: TCP retransmission's)

 works best with applications where you can follow
a specific item (data block, message, object)
through the system

NetLogger

When NOT to use NetLogger | sreeee

BERKELEY LAaB

/\
m‘

 Analyzing massively parallel programs (e.g.: MPI)

— Current visualization tools don’t scale beyond
tracking about 20 types of events at a time

 Analyzing many very short events

— system will become overwhelmed if too many
events

— we typically use NetLogger to monitor events
that take > .5 ms

— e.g: probably don’t want to use to instrument
the UNIX kernel

NetLogger |

NetLogger Components rrecee

/\
m‘

 NetLogger Toolkit contains the following
components:

— NetLogger message format

— NetLogger client library

— NetLogger visualization tools

— NetLogger host/network monitoring tools

* Additional critical component for distributed
applications:

— NTP (Network Time Protocol) or GPS host clock is
required to synchronize the clocks of all systems

NetLogger

NetLogger Message Format | rreee?)

BERKELEY LAB

We are using the IETF draft standard Universal Logger
Message (ULM) format:
o alist of “field=value” pairs

e required fields: DATE, HOST, PROG, and LVL
—DATE = YYYYMMDDHHSS.SSSSSS
—PROG: program name
—LVL is the severity level (Emergency, Alert, Error, Usage, etc.)

» followed by optional user defined fields
* http://www.ietf.org/internet-drafts/draft-abela-ulm-05.txt

NetLogger adds this required fields:

* NL.EVNT, a unique identifier for the event being logged

—e.g.: SERVER_IN, VMSTAT _USER_TIME,
NETSTAT RETRANSSEG

NetLogger |

NetLogger Message Format | rreee?)

BERKELEY LAB

« Sample NetLogger ULM event:

DATE=19980430133038. 055784 HOST=f 0o. | bl . gov
PROG=t est prog LVL=Usage NL. EVNT=SEND DATA
SEND. SZ=49332

— This says program named testprog on host
foo.lbl.gov performed event named SEND DATA,
size = 49332 bytes, at the time given

 User-defined data elements (any number) are used to
store information about the logged event - for example:

* NL.EVNT=SEND_DATA SEND.SZ=49332
—the number of bytes of data sent

* NL.EVNT=NETSTAT_RETRANSSEGS NS.RTS=2
—the number of TCP retransmits since the previous event

NetLogger

NetLogger “Mission” rrecee

/\
m‘

« Our mission is to get everyone to use the
NetLogger/ULM format for logging

— ULM will hopefully become a “standard”

— This way we can all share log file management
and visualization tools

 Probably not realistic

— Working on filters to convert the following
to/from NetLogger format
« Pablo
« NWS
* Gloperf
e others?

NetLogger |

NetLogger API cocoond]

BERKELEY LAaB

/\
m‘

 NetLogger Toolkit includes application libraries for
generating NetLogger messages
— Can send log messages to:
* file
* host/port (netlogd)
e syslogd
* memory, then one of the above

 C, C++, Java, and Perl, and Python APIs are
currently supported

| NetLogger |

NetLogger API ereeed]
-

 Only 6 simple calls:

— NetLoggerOpen()
e create NetLogger handle

— NetLoggerWrite()
e get timestamp, build NetLogger message, send to destination

— NetLoggerGTWrite()
* must pass in results of Unix gettimeofday() call

— NetLoggerFlush()
« flush any buffered message to destination

— NetLoggerSetLevel()
« set ULM severity level

— NetLoggerClose()
« destroy NetLogger handle

NetLogger |

NetLogger AP eeen]
i

 Open calls:
NLhandle *Ip = NULL,;

[*log to a local file */

Ip = NetLoggerOpen(NL_FILE, program_name, log_filename,
NULL, 0);

[*log to syslog */

Ip = NetLoggerOpen(NL_SYSLOG, program_name, NULL,
NULL, 0);

[*log to “netlogd” on the specified host/port */

Ip = NetLoggerOpen(NL_HOST, program_name, NULL,
hostname, DPSS NETLOGGER _PORT);

[*log to memory, then flush to host/port */

Ip = NetLoggerOpen(NL_HOST_MEM, program_name, NULL,
hostname, DPSS_NETLOGGER PORT)

NetLogger

NetLogger Write Call coceerd]
i

 Creates and Writes the log event:

Net LoggerWite(nl, “EVENT_ NAME",
“EVENTI D=%d F2=%d F3=% F4=% 2f”, id,
user data, user _string, user float);

— timestamping is automatically done by library

— the “event name” field is required, all other fields
are optional

— Note: not thread-safe: threaded programs must put
a mutex lock around this call

 Example:

Net LoggerWite(nl, *“HTTPD. START DI SK READ’,
“HTTPD. FNAME=Y% HTTPD. HOST=%", f nane,
host nane) ;

NetLogger

Sample NetLogger Use ceecerd]

| p = Net Logger Open(net hod, prognanme, NULL,
host nane, NL_ PORT);

whil e (!done)

{
Net LoggerWite(l p, "EVENT START",
"TEST. SI ZE=%", si ze);
[* performthe task to be nonitored */
done = do_sonet hi ng(data, size),;
Net LoggerWite(l p, "EVENT_END');
}

Net Logger Cl ose(| p);

Netl_ogger |

netlogd cecoeed) m

BERKELEY LAaB

Use netlogd to collect NetLogger messages at a
central host

— use to avoid the need to sort/merge several log
files from several places

Can also use netlogd to try to adjust time values for
clock skew

— useful if can’t get NTP installed

— allows clients to adjust all timestamps relative to
the netlogd host’s clock

— accurate only to about 5 ms, and assumes all
clients have the same latency to the netlogd host

— basically a major HACK, but can be useful

NetLogger

Logging to Memory ceree)

BERKELEY LAaB

/\
m‘

Use the NL_HOST_MEM option to send NetLogger
events to memory if you are:

— monitoring bursts of events with a duration <1 ms
Flushing of events to disk or network will occur:

— automatically when specified memory block full

— when calling NetLoggerFlush()

— when calling NetLoggerClose()

Size of memory buffer specified by NL_ MAX BUFFER
In netlogger.h

— default = 10,000 messages (typical message size is
128 bytes)

NetLogger

NetLogger Host/Network Tools | sreeee

BERKELEY LAaB

/\
m‘

 Wrapped UNIX network and OS monitoring tools to log
“Interesting” events using the same log format

— netstat (TCP retransmissions, etc.)
— vmstat (system load, paging, etc.)
— lostat (disk activity)

— ping

« These tools have been wrapped with Perl or Java
programs which:

— parse the output of the system utility
— build NetLogger messages containing the results

NetLogger

Ny

NetLogger Host Monitoring Tools | ceeeem :

BERKELEY LAB

Usage:

nl_vimstat [-d #][-t N[-n][-f logfile] [-m# [host]]
[-d N] output |og nessages every N nsecs (default = 1000)
[-t N] run for Nmnutes and exit (default = run for 60 m n)
[-n] only log if value changes
[-f logfile] wite to file nanmed logfile
[-m N [host]] logging nethod: O = file, 1 = syslog, 2 = host

| Netl_ogger |

Sample NetLogger System —

Frreeees ‘m

Monitoring Tool

« Example: nl_vmstat -t 60 -d 5000 -m 2 logger.lbl.gov

— Java program will exec vmstat every 5 seconds for 1
hour, and send the results to netlogd on host
logger.lbl.gov

— Generates the following information:

e CPU usage by User
« CPU usage by System

* NetLogger Messages:

DATE=19990706125055. 891620 HOST=port noy. | bl . gov
PROG=nl _vmstat LVL=Usage NL. EVNT=VMSTAT_USER TI ME
VMS. VAL=9

DATE=19990706125055. 891112 HOST=portnoy. | bl . gov
PROG=nl _vmst at LVL=Usage NL. EVNT=VMSTAT_SYS TI ME
VM. VAL=5

NetLogger

NetLogger Network Tools cerce]

BERKELEY LAB

 NetLogger tool for SNMP queries
— Usage: nl_snmpget hostname object [port]

« Examples:
— host monitoring
* nl _snnpget uni Xx_host sysNane
— Returns: system.sysName.0 = wakko.lbl.gov
— router monitoring
* nl _snnpget routernane iplnDelivers 3
—Returns: tcp.tcplnErrs.3 = 4000
— ATM switch monitoring
* nl _snnpget sw tchnane sonet Li neFEBES
* nl _snnpget sw tchnane portTransm ttedCells

NetLogger

Other Tools ’\|

m‘
BERKELEY LAB

 NetLogger also includes a set of PERL scripts to
— sort files by timestamp and/or other ULM field
— merge files

— generate gnuplot formatted file from a
NetLogger file

| Netl_ogger |

Event

NetLogger Event “Life Lines”

rreereer

End Processing / /
Begin Processing I J

End Read

Begin Read

Request data

time

NetLogger

/\
m‘

Event ID eceeny] ‘m‘

* In order to associate a group of events into a
“lifeline”, you must assign an event ID to each
NetLogger event

« Sample Event Ids
— file name
— block ID
— frame ID
— user name
— host name
— etc.

| Netl_ogger |

Sample NetLogger Use with

Event IDs

A

Frrreeeer ‘m

BERKELEY LAB

| p = Net Logger Open(net hod, prognane, NULL, hostnanme, NL_PORT);

f or

}
Net

(1=0; 1< numblocks; 1++) {
Net LoggerWite(lp, “START_READ’,

“BLOCK | D=% BLOCK_SI ZE=%", i, size);

read bl ock(1);
Net LoggerWite(l p, “END READ’,

“BLOCK | D=% BLOCK Sl ZE=%", i, size);

Net LoggerWite(lp, “START_PROCESS’,

“BLOCK | D=% BLOCK_SI ZE=%", i, size);

process_bl ock(i);
Net LoggerWite(lp, “END_PROCESS’,

“BLOCK | D=% BLOCK_SI ZE=%", i, size);

Net LoggerWite(lp, “START_SEND’,

“BLOCK | D=% BLOCK Sl ZE=%", i, size);

send bl ock(i);
Net LoggerWite(lp, “END SEND’,

“BLOCK | D=% BLOCK_SI ZE=%", i, size);

Logger d ose(l p);

NetLogger |

NetLogger Visualization Tools | eeeeeryy :

BERKELEY LAaB

 Exploratory, interactive analysis of the log data has
proven to be the most important means of identifying
problems

— this is provided by nlv (NetLogger Visualization)

* nlv functionality:

— can display several types of NetLogger events at
once

— user configurable: which events to plot, and the
type of plot to draw (lifeline, load-line, or point)

— play, pause, rewind, slow motion, zoom in/out, and
SO on
— nlv can be run post-mortem or in real-time

e real-time mode done by reading the output of netlogd as it
IS being written

NetLogger

NLV Graph Types ceree)

BERKELEY LAaB

/\
m‘

e nlv supports graphing of “points”, load-lines, and
lifelines

event | i S % point

avent MW\/\ load-line
event E / /

.
event D .{ J' / lifeline

event E / / /
ever / | / /

event A&

NetLogger

A\
frrereeoer ‘m

— HetLogyer IHEE
File Edit View Options Help
MetLogoer Wisualization Felenn Bar
FILE_RELEASED — Event keywords
FILE_BFETEIEVED —
FILE_PUSHED — Graph
FILE_IN_CACHE —
STAGE_FINISHED — Legend
CRACHING_BEQUEST — Window size
PFIF_PEHDING — “ Bz windowr
| | | !
0 = 2 2 4 5I Back 1 window
ume(s ” FlayPanse
Servers: _ B _ECCeoaet—cednTg B -r s pending Borward 1 window
Window (s} Max (s « MU W (5] Seesd |
i T s— e
T | L == |
|| Goto end
0.0 Zoom depth=0

Statu=s: Pau=ed

Avg. data density Indexer Iake window = zoom

Status msg ou are here g ary line

| Netl_ogger

NLV Zoom Feature ‘.’.\.

BERKELEY LAB

_.i HetLogger | ; | 4 | _

File Edit View Options Z00H BOX Help

MetLogger WVisualization

STRGE_FIHISHED — |-

CACHINE BEQUEST ||}

PFTP_PEHDING — | ™

time(s)

servors: [[NNMNCICRRGRIONINN ~ ~ Sossasfoedad F pftppending
Mindow (=} Max €=3 “ |>;||| » | r“'ﬂl 5!;@%%

1362,6 1362.6

I —t [Z00H STACK IS

i S \

Status=: Paused

| NetLogger

NLV Graph Types

(]

File Data Options

TV_TILE_OUT_TEXCACHE —
TV_TILE_IN_TEXCACHE —
TV_TILE_BERD]
APP_RECEIVE —

1S5 _START _WRITE —
1S5_END_READ —
1S8_START BERD |

1S5 _SERV_IH —|
155_MASTER_OUT —
1S8_MASTEER_IN —|
APT_SEWT —|

TV_TILE_REQ —

HetLogger
Help

MetLogger Visualization

(¥

HETSTAT_FETRAHSSEGS —| 3 EL - - e - >
VMSTAT USEE_TIME —
VMSTAT _S¥S_TIME — |- —_—
101&000 ?02!;000 :mz:!ooo :mz-lmoo mzéooo
time(ms)
Servers: i _ al blackstone_sprintcorp_com_
Status: Paused @ -l Analysis .| Time Window (ms)
| Auto-—speed 10000
@ Speed G I od
Q 1.00 » | « | » | . | 7017050
— | U

NetLogger

rreerrererer

BERKELEY LAB

A
[l

NLV Configuration cocornd] B
:

« NLV is very flexible, with many options settable in
the configuration file.

e Format:
set +/-eventset nane
type <line, point, | oad>

id [list of UUMfield nanes used to determ ne which
Net Logger nessages get grouped into the sane graph
primtive]

group [list of UUMTfield names which will be napped to the
sanme col or]

val field nane mn_val max val

annotate [list of field nanmes to display in wth annotate
option]

[list of all event IDs inthis lifeline]

 Each nlv graph object needs to be defined by a “set”

e Events and event-sets both use "+" and "-" to indicate
default visibility

| NetLogger |

NLV Configuration cocornd] B
:

Events and eventsets are "stacked" in nlv in the
order given in the configuration file

Other Keywords:
— groupalias A[bcd]
* list of fields values for the “group” event that can be
considered equivalent

 e.g.. any "hostname" equal to b, c, or d will be
displayed and colored as a member of group A

Specific config file examples will be shown with
each sample application later in the talk

NetLogger

Example NLV Configuration | reecery

BERKELEY LAB

display vnstat info as a “l oadline”

set +VMSTAT

t ype | oad

loadline constructed from nessages with the sane HOST and NL. EVNT
id [HOST NL. EVNT]

messages wth the sane HOST get the sane col or

group HOST

#list of NL.EVNT values in this set _

[+VMBTAT_SYS Tl ME +VMSTAT _USER Tl MVE]

display netstat TCP retransmts as a “point”

set +NETSTAT

t ype poi nt

ignore values outside the range 0 to 999

val NS. VAL 0.0 999.0

point constructed from nessages fromthe sane HOST and PROG
id [HOST PROG]

messages wth the sane HOST get the sane col or

group HOST

[+NETSTAT_RETRANSSEGS |

| Netl_ogger |

Example NLV Configuration | reeeey :

BERKELEY LAB

display server data as a “lifeline”
set +SERVER READ
type |ine

lifeline constructed from nessages fromthe sane client
and server

id [CLIENT_HOST DPSS. SERV]

nmessages wth the sane DPSS. SERV get the sane col or
gr oup DPSS. SERV

[+APP_SENT +DPSS SERV_| N +DPSS START READ
+DPSS_END READ +DPSS START WRI TE +APP_RECE! VE]

| Netl_ogger |

Network Time Protocol ceree) ‘:n‘

BERKELEY LAaB

 For NetLogger timestamps to be meaningful, all
systems clocks must be synchronized.

— NTP is used to synchronize time of all hosts In
the system.

—NTP is from Dave Mills, U. of Delaware
(http://lwww.eecis.udel.edu/~ntp/)

— Must have NTP running on one or more primary
servers, and on a number of local-net hosts,
acting as secondary time servers

 Could also place GPS clocks on every host for
even more accurate clocks

NetLogger |

How to Instrument Your —

rreereer

/\
m‘

BERKELEY LAaB

AEEHcaﬁon

 You'll probably want to add a NetLogger event to the
following places in your distributed application:

— before and after all disk 1/O
— before and after all network I/O
— entering and leaving each distributed component

— before and after any significant computation
e e.g.. an FFT operation

— before and after any significant graphics call
e e.g.: certain CPU intensive OpenGL calls

 This is usually an iterative process

— add more NetLogger events as you zero in on the
bottleneck

NetLogger

Does NetLogger affect —

rreereer

/\
m‘

BERKELEY LAaB

aEEIication Qerformance?

 There are several things to be careful of when doing
this type of monitoring:

— If logging to disk, don’t log to a nfs mounted disk
* bestto log to /tmp, which may actually be RAM (Solaris)

— Probably don’t want to send log messages to a
slow (i.e.: 10BT) or congested network, as you’ll
just make it worse

* log to alocal file instead

| Netl_ogger |

Sample NetLogger Analysis rreere)

/\
m‘

 We next show how NetLogger was added to 3
different applications:

— A cache manager for the HPSS
— A remote visualization application

— A HENP data analysis package accessing
parallel remote data service

| Netl_ogger |

Example 1. HPSS Storage —

rreereer

/\
m‘

Manager AEQIication

 NetLogger was used to test and verify the results
of a Storage Access Coordination System (STACYS)
by LBNL’s Data Management Group

« STACS s designed to optimize the use of a disk
cache with an HPSS Mass Storage system, and
tries to minimize tape mount requests by
clustering related data on the same tape

 NetLogger was used to look at:
— per-query latencies

— to show that subsequent fetches of spatially
clustered data "hit" in the cache.

e (http://gizmo.lbl.gov/sm/)

BERKELEY LAaB

NetLogger

STACS Instrumentation Points | seeeeey p

m‘
BERKELEY LAB

Client Monitoring Points:
A) request arrivesat HPSS
B) start transfer from tape
C) tapetransfer finished
D) file available to client

= E) fileretrieved by client
he | ¢&———— <
vache PSS l F) filereleased by client

| Netl_ogger |

NLV for STACS: Tracking File =
% E’ ‘m

File Display Bookmarks Help

NetLogger Visualization

i,

lﬂﬂﬂﬂﬂﬂ Eﬂﬂﬂﬂﬂﬂ 3“[“]“[“]
tme{ms)
servers: [EIEHIEREEN =7 | - = = « w55 [Wi2z| w o
+ ! Speed
Status: Paused H I “ I ", I H I | 2 I~
0.0
F 4 limdow =2 = ﬁn515515
T I ‘P‘ ?‘ @ 7.0 m Ster on EOF
0.0 3579

F Skip to data
=

| Netl_ogger

N

B T v ™ B [I T TR I I R — ransenannans s [TR T TV S — -3¢+~ - BE 13- B -~ SN -~ MG 53¢

NetLogger |

NLV Configuration File for this | —~ .,

Frrereoer ‘m

Application

set +SMANACGER
type line

lifeline defined by nessages for the sane file and
a given query | D nunber

id [QUERY FI D]

color lines by query ID
group QUERY

[

+B REQUEST _ARRI VED
+C_TRANSFER STARTED

+D STAGE _FI NI SHED

+E FI LE_PUSHED

+F _FI LE_RETRI EVED

+G _FI LE_RELEASED

]

| Netl_ogger |

Example 2: Parallel Visualization | —~ .,

Frreeees ‘m

Application

 Radiance is a suite of programs for the analysis
and visualization of lighting in design.

— Input includes the scene geometry, materials, luminance,
time, date, and sky conditions

 Radiance has been adapted at LBNL to run on
multiple cluster nodes

— The image is broken into many small pieces, and
Illumination calculations are performed for each piece
Independently

 Used NetLogger to measure:
— overall system throughput
— latency for each stage of getting data, processing it, and
writing it
— patterns of latency which reflect resource contention and
other interaction delays

| NetLogger |

Parallel Ray Tracing (Radiance): | —~_ .,

rreerrererer

Instrumentation Points N

Y
*
lent

*

|

C

Master
[
/L | \’\\{\
e N e ;% N e
Wogrier: Worker: Worker:
Projection Projection Projection
Y, _ Y, \ (L

; p e p C N
Worker: Ray Worker: Ray Worker: Ray
Tracer L Tracer Tracer

& ! J /\l J - /\l J

* = monitoring point

NetLogger

NetLogger Radiance Results:

Before Tuning

MetLogger Yisualization

—~

A
(reeeee

||||
_

5 _AFTER. WRITE —
5_BEFORE_WRITE —|
S_AFTER. DTRACE —|

5 _BEFOPE_ETEACE —|
S _AFTEER. PROJECT —|

S _EEFORE_PROJEC —|

5 BEFORE_BERD —

C_EHI —

C_BEFORE_WRITE —

oo //ﬂ

| |
[6.5

time(s)

Servers: o i o

NetLogger

NetLogger Radiance Results: f"\l

r

After Tunin

Metlogger Wisualization

5_AFTER._ WRITE —|
5_BEFOBE_WRITE —|
5_AFTER._ETBACE —|
5_BEFORE_BTBACE —|
5_AFTER_PROJECT
5_BEFORE_PROJEC
5_AFTER_FEAD —

5_BEFORE_BERD — / T

C_EHD —

C_BEFORE_WRITE —

[I [
& 6.5 7

time(s)

SErVers: d i o

NetLogger

NLV Configuration File for this | —~ .,

frrereeoer ‘m

Application

set +RADSERVER

type line

lifeline defined by processing elenent id

id PE

color lifelines by LTYPE (1=server, 2=client)
group LTYPE

[+S BEFORE_READ +S AFTER READ +S BEFORE_PRQJECTI ON
+S AFTER PROJECTI ON +S_BEFORE RTRACE +S_AFTER RTRACE
+S BEFORE WRI TE S_AFTER WRI TE]

set +RADCLI ENT

type |ine

I d PROG

group LTYPE

[+C BEFORE_WRI TE +C AFTER WRI TE +C AFTER READ +C _END]

| Netl_ogger |

Example 3: Parallel Data Block | —~ .

Frreeees ‘m

Server

 The Distributed Parallel Storage Server (DPSS)

— provides high-speed parallel access to remote
data

— Unique features of the DPSS:
 On a high-speed network, can actually access remote
data faster that from a local disk
—57 MB/sec vs 10 MB/sec
* Only need to send parts of the file currently required
over the network
—e.g.: client may only need 100 MB from a 2 GB data set
—analogous to http model

 NetLogger was used for performance tuning and
debugging of the DPSS

NetLogger

DPSS Cache Architecture ceceeet] i

data blocks

. Parallel
data blocks > Ei
DPSS Server

\
: 8 aralle
—"

DPSS Server

N

. o
— = Parallel

Disks
DPSS Server

Client Apylication

Logical Block data blocks

Requests

DPSS Master

* |ogical to physical
block lookup

e access control

* load balancing

Requests

Netl_ogger |

DPSS Instrumentation ceceend] :

BERKELEY LAB

from other DPSS

servers
<
O /e
A 5% A
Client @)
Application A DpSS Master [
to other
* 7 clients
Y s
Block DPSS Data Server Block
Request Writer
Thread
s A
' -------__-_---------_-,-—’
Shared Memory Cachg
% @' Disk Disk
ep Read - Read Read Read
Thread ﬁb Thread Thread Thread
A\
* = monitoring point % % % %
Disk Disk Disk Disk

NetLogger

NetLogger Results for the DPSS ceceerty
o7

F: time for 20 blocks to get from one server [/cul;'rgnz SErvers are mora than
wiitet to the application reader twice this rate)

i_! total: 204 ms, avg 10.2 ms '
TCP_retrans . 32.5 Mhb/sec -

app_receive

nel transit
start write
wrile gHete
end_read
‘E =
.E, di‘sk F‘Eﬂd | & cache hits
I (zeto read
Eﬂ start read i tim)
B A
fract
Fread guene | | !
| 1
S | :
SErver_m | B: typical ['
. L . . disk read: I ¥
net transit : o B: fast disk Dms | .
10 tead: 1
master _out Ll 3 ms o o .
| : ! '
T ; C: 20 block average time to write | .
L & XIHIE <l hlocks to netwrork: I :
master_in | 86 S ! v fourrent
. 'l D: 20 block average time spent in | length of the . valugis “ssdlog” —
net transit X [— read queue: 5 ms I I “pipeline” (73 60 ms) . about 30ms) G2 lng” - - -
1 1 =k -y
app_send |:|||||||||||||i|| LN L N N N Y B L B B B
2000 2200
[E: time to read 20 blocks from three disks I
|-l— total:123 ms, avg 6.15 ms -
, g MBy/sec (63.7 Mbfses) . Time (ms)

| NetLogger |

NetLogger Results for the DPSS
over a WAN

TCP retrans

app receive

start write

end read |
start read |
server in
master out

master in |

app send

BERKELEY LAB)

A
.:;*}l ‘m

“tioe.nettep etrans log”™ ——— “foc.serv_flushlog” e
“ade net top retrans log™ —+— “edcgerv_flushlog™ .
“ugwestnet teprptranslog” —e— “usbrestserv flushlog® o

“tvlog wswest” ———

“tvlogede™ _,

“tvlog.ioe” —=—

3,000 4,000

tme (ms)

| NetLogger

—~

. _ .
NLV of DPSS with a HENP client

HMetLogger
File Data Options Help

MetLogger Visualization

AMI_PAMIHVOEED —

— ’/ /
AMI_CHECK,_BAHK —|

STOP_GETEVENT —
START_GETEVEHT —| /

APF_RECEIVE —
1S5 _START _WRITE —
155_EWD_READ —|
1S8_START BEAD —

1S8_SERV_TH —|

1S5_MASTER_OUT —

1S5_MASTER_IN —

APP_SENWT —!
46800 astoe - 52800 54800 set0s
time{ms)
Servers: # hpss3_nersc_gov
Time Window {ms) Q -~ Analysis SEIEE FEvEE)

10090 i AUuto—speed -
ekt @ Speed G

ﬂ_j,_ﬂ:_j,:'_j 46;00 %w =4

Netl_ogger |

NLV Configuration File for this | —~ .,

Frreeees ‘m

Application

set +STAF

type |ine
1d [HOST PROG
group HOST

[+STAF _OPEN R +START GETEVENT +STOP GETEVENT
+STAF_CLOSE R]

set +DPSS READ
type |Iine

#lifeline defined by DPSS. Bl D and HOST
| d [DPSS. Bl D HOST]

color lines by DPSS. SERV
group DPSS. SER

+APP_SENT +DPSS MASTER | N +DPSS MASTER OUT
+DPSS SERV | N +DPSS START READ +DPSS _END_READ
+DPSS”START WRI TE +APP_RECEl VE]

NetLogger

Current Work: JAMM ceecerd]

« Java Agents for monitoring and management
(JAMM)

— Java RMI-based agents are used to start up
NetLogger versions of system tools

e netstat, vmstat, uptime, xntpdc, ping, netperf,
etc.

 Monitoring can be based on application use

— e.g.: only do monitoring while a client is
connected to a server

 For more info see: http://www-didc.Ibl.gov/JAMM/

NetLogger

JAMM for active Network —

rreereer

/\
m‘

Monitoring

 Network performance data is measured using netperf
(nttp://www.netperf.org) and ping, and results are
published in an LDAP database

BERKELEY LAaB

« JAMM agents are used to monitor server activity, and
automatically start netperf and ping experiments
between client and server hosts

 Applications can query LDAP for this information,
and set the optimal TCP buffer size based on this.

— Optimal buffer size equal 2 x (bandwidth * delay)

NetLogger

Java Agents For Monitoring -

rreerrererer

and Management SJAMMZ
e %

agents - \ PSS Server
0§<<<<<<<<<<<<<i 1
Client AppH atio |

| N

DPSS Server

S

LDAP Database
DPSS Server

HTTP server DPSS Master

7Y
Q
«Q
(9]
>
—
(7))

NetLogger

Current Work ceece?]

BERKELEY LAB

 NetLogger enhancements:

— adding Globus security

* plan to use GlobuslO for sending NetLogger socket
connections

— binary transmission/storage format

| Netl_ogger |

Grid Monitoring Service cerce]

BERKELEY LAaB

Our goal is to make this sort of monitoring a standard
“grid service”

Before this can happen, we need to define:

— archive system
« standard interface to archive system (probably LDAP?)

— Network monitoring system
e Surveyor, NWS, pingER, OCXmon, GloPerf,...
« SNMP security issues (SNMP proxy?)

Grid Forum “end to end monitoring” working group
DOE NGI monitoring / instrumentation working group
— goal is to deploy something by the end of the year

NetLogger

Getting NetLogger cerre) ’\‘

e Source code and some precompiled binaries are
available at:

— http://www-didc.lbl.gov/NetLogger

e Solaris, Linux, and Irix versions of nlv are
currently supported

| Netl_ogger |

